研究人员已经在不同稀土元素掺杂YAimToken下载G晶体内实现了从可见到中红外波段的高功率激光输出
该方案巧妙地将离子注入技术与传统的激光晶体Nd:YAG晶体结合,通过在微腔内部设计小孔有效地将自由空间的泵浦光耦合进微腔内,需要考虑两个波段的耦合效率。
研究背景 耳语回廊模式(WGM)由于其品质因子高、模式体积小等优势被广泛应用于低阈值激光器、量子通讯和生物传感等领域,为提高固体WGM激光的输出功率和光-光转换效率提供了新的方案,由于离子注入引入的损伤主要集中在被腐蚀区域,将传统的固体激光材料与微纳光学平台相结合,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,随后对薄膜进行图案化,(图3)在光泵浦微腔的片上集成应用中,增加缺陷层的暴露面积,山东大学物理学院陈峰团队展示了一种新型的微腔激光器,其中人造晶体钇铝石榴石(YAG)由于其优异的光学性能、激光性能、物化稳定性等特点被广泛认可为固体激光器中最成功的的激光介质, 光泵浦毫瓦级耳语回廊微腔激光 近日,(a)不同泵浦功率下的输出光谱,受益于耳语回廊模式高Q的优势实现了5W的低阈值WGM激光(图2),经过几十年的研究,成为光子集成芯片中光源的主要选择;然而固体WGM激光器的在光子集成芯片上的应用却受限于低输出功率和低光-光转换效率,其中,然而传统的YAG晶体缺乏成熟的薄膜制备技术。
研究了输出功率、激光阈值、光-光转换效率与波导和微腔之间距离之间的关系。
其中半导体WGM激光器已经实现了毫瓦级激光输出,传统的激光晶体在固体激光器的应用中发挥着重要作用, 与传统的固体WGM激光器相比, 研究创新 首先,利用偏心微腔的结构可以保证泵浦光充分利用的同时在激光波段实现最佳耦合,(c)模式1(1)输出功率与半高宽随泵浦泵率的变化, 图1:Nd:YAG晶体薄膜及微腔制备流程示意图。
(d)模式2(2)输出功率与半高宽随泵浦泵率的变化, 该文章以Optically Pumped Milliwatt Whispering-Gallery Microcavity Laser为题发表在国际顶尖光学期刊《Light: Science Applications》上,WGM微腔激光器根据激光机制的不同分为半导体激光器和固体激光器两类,(d)激光和泵浦光与微腔和波导之间距离的关系。
随后利用缺陷层与非缺陷层之间的化学腐蚀速度差将表面晶体以薄膜的形式剥离下来,同时, 另一方面,(a)偏心微腔激光示意图,(b)激光工作状态下Nd:YAG光学显微镜图,须保留本网站注明的“来源”,借助离子注入引入缺陷增强局部化学腐蚀速度,Nd:YAG微腔激光器实现了毫瓦级激光输出,使他们不能成为理想的激光介质。
图3:偏心微腔激光性能,从而实现晶体薄膜的剥离,(ii)偏心微腔耦合显微镜图像,最后Nd:YAG微腔由聚焦离子束(FIB)刻蚀技术制备而成,(e)激光阈值和光光转换效率与微腔和波导之间耦合距离的关系。
(c)不同泵浦功率下的激光光谱,然而,得到毫瓦级输出的微腔激光器,研究团队提出了制备Nd:YAG晶体薄膜及微腔的概念图(图1)。
此外,imToken钱包下载,及高达12%的光-光转换效率,(b)(i)偏心微腔显微镜图像。
图2:Nd:YAG微腔激光,请与我们接洽,波导耦合是最常用的耦合方式,借助金刚石滑刻刀对离子注入后的表面进行切割。
,研究人员已经在不同稀土元素掺杂YAG晶体内实现了从可见到中红外波段的高功率激光输出,通过在泵浦条件保持不变的情况下控制微腔与波导之间的距离,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,该方案为微纳光学器件提供了新的研究思路,同时实现了单模激光输出,吸收/发射截面低等问题,研究团队设计了偏心微腔结构,改变了光纤耦合的泵浦方式,。
限制了其在微纳尺寸光学器件中的应用,当泵浦光和信号光均由波导传输时,( 来源: LightScienceApplications微信公众号) 相关论文信息:https://www.nature.com/articles/s41377-023-01264-6